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Abstract—Today, users interact with a variety of online
services offered by different providers. In order to supply their
services, providers collect, store and process users’ data according
to their privacy policies. To have more control on personal
data, user can specify a set of privacy preferences, encoding
the conditions according to which his/her data can be used and
managed by the provider. Moreover, many services are context
dependent, that is, the type of delivered service is based on
user contextual information (e.g., time, location, and so on). This
makes more complicated the definition of privacy preferences,
as, typically, users might have different attitude with respect the
privacy management based on the current context (e.g., working
hour, free time). To provide a more fine-grained control, a user
can set up different privacy preferences for each different possible
contexts. However, since user change the context very frequently,
this might result in a very complex and time-consuming task.
To cope with this issue, in this paper, we propose a context-
based privacy management service that helps users to manage
their privacy preferences setting under different contexts. At this
aim, we exploit machine learning algorithms to build a classifier,
able to infer new privacy preferences for the new context.
The preliminary experimental results we have conducted are
promising, and show the effectiveness of the proposed approach.

Keywords—Context awareness; privacy preferences; learning;
context-based services.

I. INTRODUCTION

In recent years, users interact with many different ser-

vices managed by a variety of providers. In order to supply

their services (e.g., entertainment, health monitoring, etc.),

providers collect, store and process a massive amount of

personal information about users. Every service provider has

its own privacy policies, which express how it collects and

manages individuals’ personal information. In contrast, to

improve the privacy control, individuals can explicitly express

their privacy preferences, which state the conditions according

to which their data have to be used and managed. Today, most

of the provided services are context dependent, that is, the

deliver of the service is based on user contextual information

(e.g., time, location, and so on). Examples are location-based

services, IoT based services, and so on. Contextual information

refers to any piece of data of the individual that can be

used to define his/her current situation. Typically, contexts

can impact the user privacy preferences, for instance, a user

may feel comfortable to access entertainment services when

(s)he stays at home, but (s)he will not be comfortable to

access the same type of services during office hours, when

he/she is in his/her office. Many studies show how contextual

information is important in privacy preferences specification.

For instance, Nissenbaum et al. [1] show that most of the

privacy preference models fail to protect against violations

of user privacy preferences because they do not keep into

account contextual information. As a matter of fact, many of

the existing privacy preferences frameworks (e.g., [2], [3], [4])

do not consider individuals’ contextual information to make

privacy aware decisions.

To cope with this limitation, users might specify context-

based privacy preferences, that is, privacy preferences stating

conditions on how personal data has to be used based on

current situation (e.g., no access to entertainment services

when the location is office). This brings the nice benefit of

increasing the user control over his/her data. However, since

a user may interact with several contexts, it also increases the

number of preferences that (s)he has to specify and manage,

resulting in a very complex and time-consuming task. For

this reason, in this paper, we propose a service that helps

users to manage their privacy preferences when they move

to a new context. More particularly, we design a framework

that infers individuals’ privacy preferences based on their

contextual information.

The overall idea is that when a user enters in a new

context CTXnew, the service automatically sets a new privacy

preference for it, by leveraging on user previously specified

existing context-based privacy preferences. More precisely,

among the privacy preferences, the proposed approach iden-

tifies the preferences defined for contexts that are ”similar”

to CTXnew. Then, it exploits them as a baseline to define

the new privacy preference for CTXnew. The above-described

process has been designed such as to take into account users’

privacy perspective. That to say, we do not want to generate

a new privacy preference that, even if related to those defined

for similar contexts, relaxing some conditions that are relevant

for a given user. At this purpose, we propose to learn from

a user two crucial aspects. The first is about which fields

of a context (e.g., time, location, etc.) are considered more

informative in setting his/her privacy preferences by the user.

This information is useful to identify among the contexts for

which the user has already defined his/her preferences, the one
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that is most relevant to CTXnew. The second information to

be learnt is how much the user selected change the privacy

preference associated with the most relevant context, in order

to adapt it for CTXnew.

At this purpose, we exploit machine learning algorithms,

to build a classifier able to decide which privacy preference

components a user is pron to modify (e.g., purpose, retention)

and the corresponding update range, as well as, which are

the context components that trigger the preference update.

More precisely, we take into account user feedback to create

a training dataset on which learning algorithms build the

classifiers. The learned classifiers are then used to derive new

privacy preferences for the new context.

To show the feasibility of the proposed approach, we

have conducted some preliminary experiments. In particular,

we compared the proposed approach with a naive approach,

that is, a classifier suggesting context-based privacy prefer-

ences without leveraging on previously specified context-based

privacy preferences. At this purpose, we have extended the

approach in [4], where a learning approach has been proposed

to suggest non context-based user privacy preferences. The

approach in [4] first creates a training dataset of user labels

on a set of service requests (e.g., a label is the accept/deny

decision on a given service request), then generate a classifier

on it, able to automatically decide if a new service request has

to be accepted or denied.1 In order to compare the proposed

approach with [4], we extended the latter such as to collect

users’ labels on service requests complemented with context

information. Moreover, we test different supervised machine

learning algorithms, namely, Logistic Regression, Random

Forest, and Naive Bayesian [5]. The obtained results show

that the proposed approach gives better performance than the

naive approach.

The rest of this paper is organized as follows. Section II

discusses related work. In Section III, we describe our pro-

posal, whereas Section IV shows the results of our preliminary

experiments. Finally, Section V concludes the paper.

II. RELATED WORK

In the literature, many papers have addressed context

awareness to dynamically adapt users’ privacy preferences. For

instance, Behrooz et al. [6] proposed a context-aware privacy

policy language (CPPL) that uses context to pre-filter policies

applicable to the current situation, in order to reduce the

number of policies that actually have to be evaluated. Konings

et al. [7] proposed a context-aware privacy policy selection

model, exploiting user’s current location and other potential

contextual features, such as time, user’s activities, or mood.

Bunnig et al. [8] proposed an abstract disclosure decision

1Due to space limitations, we do not provide in this paper details about
how the learning approach works, by referring the interested reader to [4] for
more details.

model and argued that an appropriate context abstraction is

required to match the users privacy preferences.

Some approaches implemented context-based privacy pref-

erences in the smart-phone environment. For example, Wi-

jesekera et al. [9] proposed a novel privacy management

system that relies on user’s contextual information, to improve

user privacy decision making capability in mobile platforms;

whereas [10] proposed user’s location sharing privacy pref-

erences by considering contextual information. Yuan et al.

[11] proposed a privacy-aware model for photo sharing based

on machine learning by exploiting contextual information.

The proposed model utilizes image semantics and requester

contextual information to decide whether or not to share a

particular picture with a specific requester in a certain context.

Likewise, [12] proposed a privacy preference framework that

semi-automatically predicts sharing decision, based on per-

sonal and contextual features.

However, the approach we propose in this paper differs

from all the above-mentioned proposals in that none of the

above works support user in the complex task of specification

of context-based privacy preferences.

III. PROPOSED METHOD

As introduced in section I, individuals’ privacy expecta-

tions are highly context dependent, and since users change

their context very often, setting up privacy preferences for

every new context is a very complex and time-consuming

task. To address this issue, we design a service helping users

to manage privacy preferences setting when they move from

one context to another. The main idea is to infer the best

privacy preferences for the new context leveraging on privacy

preferences previously specified by the user for different

contexts. Thus, as a first step, we need to select among the

contexts for which the user has already specified a preference,

those that are similar to the new one. In doing this, we do

not simply rely on a similarity measure between contexts,

but we also want to keep into account users’ perspective (see

Section III-C). Indeed, given a similarity measure, two existing

contexts could have the same distance to the new one but differ

on a few fields (e.g., time, location) that are very relevant for

that user. As such, we would like also to take into account,

for a target user, his/her preferences on which context field is

more informative and thus should have more relevance in the

similarity measure.

Once the most similar and most relevant context has been

selected, the system has to retrieve the corresponding privacy

preference. Here, the basic assumption is that this preference

might represent a good match for the new context but some

slightly modifications might be needed as well. In order to

understand whether and how the identified privacy preference

has to be adapted for the new context, we want to take

into account once again user’s perspective. More precisely,

to learn which fields of the identified privacy preference need
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to be modified (e.g., purpose, data, retention, and recipient),

we exploit machine learning to infer, from each user, which

component and how is willing to adapt it.

All the above described steps will be described in the

following, starting from the modeling of contexts and context-

based privacy preferences.

A. Contexts and context-based privacy preferences modeling

A context is defined by the information used to characterize

the present situation of individuals (e.g., activity, time, etc.).

For the sake of simplicity, in this paper, we consider contexts

containing information on four different dimensions, namely,

time, location, activity, and social. The latter two represent the

action the user is currently doing (e.g., work, run, relaxing,

etc) and companion with whom he is (e.g., alone, friends,

colleagues, etc). However, the approach can be extended to

the consideration of additional contextual information.

More formally, user contexts can be defined as follows.

Definition 1: (User context). A context for a
user U , denoted as CTXU , is a set of pairs
{(tm, vtm), (lc, vlc), (ac, vac), (sl, vsl)}, where the first
component is a contextual property and the second its
corresponding value. More precisely, tm denotes a time, lc a
user location, ac denotes a user activity, whereas sl specifies
the social dimension (i.e., user companion).

Example 1: Let us suppose that a user U’s location is

library, time is Monday morning, and (s)he is studying
with his/her brother. Therefore, the current context of

U can be modelled in the following way: CTXU =
(Monday morning, library, studying, brother)

To provide a more fine-grained control of personal data

release, a user can set up different privacy preferences for

different contexts, stating the conditions according to which

his/her data has to be used and managed in that particular

context. We formally define a user’s context-based privacy

preference as follows.

Definition 2: (Context-based privacy preference). A
context-based privacy preference for a user U , denoted as
CTXpp U , is a tuple (CTX , PP ), where, CTX is a context,
and PP is a tuple (p, d, ret, rec), where, p denotes the
purpose for which a service provider is allowed to collect the
data denoted by d, ret specifies how long the service provider
can store the data, whereas rec indicates whether additional
third party entities can use the data.

Example 2: Let us consider a user U that wishes to

release his/her name, date of birth, certificates data

only for admission purpose. Moreover, (s)he wants that

the data will not be retained more than 260 days, allow-

ing service providers to share it with third party. Let us

assume that the user wants this preference to be enforced

in the context presented in Example 1. Therefore, such

context-based privacy requirements can be encoded through

the following context-based privacy preference: CTXpp U =
({Monday morning, library, studying, brother},
{admission, name, date of birth, certificates, 260 days,
yes})

B. Context distance metrics

As mentioned earlier, when a user moves to a new context,

we calculate a similarity score between the new context and all

the contexts for which the user has already defined a privacy

preference. To find the most similar context and corresponding

privacy preference, we measure a distance to determine how

far the new context is from existing contexts. To do so, we

measure the distance of each context component, as explained

in what follows.

Time distance: time can be expressed as a numerical

value2, hence, we can use the Euclidean distance [13] to

measure the time distance between different contexts.

Definition 3: (Time distance). Let CTXUn
be a user

new context, and CTXUp
be a user’s prior context. Let

max(CTXUn .tm,CTXUp .tm) be the maximum value be-
tween the time components. Therefore, the time distance is
defined as follows:

Dtm(CTXUn .tm,CTXUp .tm) =

|CTXUn
.tm− CTXUp

.tm|
max(CTXUn

.tm,CTXUp
.tm)

Location distance: In this work, rather than the exact GPS

location, we are interested in modelling locations that can be

sensitive for personal data release (e.g., home, office). To this

end, we rely on the Aura Location Identifier (ALI) model [14].

The main idea of this model is to decompose physical spaces

into different levels of spaces. For instance, the campus of

the University of Insubria can be decomposed into several

spaces: Rossi Building, Morselli Building, Antonini Building,
etc. Each of these buildings is in turn divided into smaller

composing sub-spaces, until reaching enough precision. This

hierarchical representation is called a space tree, where each

node corresponds to a given space in the physical environment.

Figure 1a shows part of a space tree (i.e., location hierarchy)

for the University of Insubria. By exploiting this hierarchy, we

measure the distance between spaces, by leveraging on the Wu
and Palmer similarity [15] metric.3

Definition 4: (Location distance). Given two location l1
and l2, let ccn be the closest common ancestor between l1
and l2 in the space tree, depth(ccn) be the number of edges
from the root to ccn, dis(l1) and dis(l2) be the distance

2For the sake of simplicity, in this paper, the time is expressed by only
considering 4 time slots for each week day (e.g., Monday morning, Monday
night, etc.).

3Note that alternative similarity metrics can be easily used as well.
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(a) Location hierarchy (b) Activities hierarchy (c) Social hierarchy

Figure 1: Location, activity, and social hierarchies

of location l1 and l2 from ccn, respectively. Therefore, the
location distance is defined as follows:

Dlc(l1, l2) = 1− 2 ∗ depth(ccn)
dis(l1) + dis(l2) + 2 ∗ depth(ccn)

Activity distance: we exploit the Hierarchical Structural

Model (HSL-model) [16] to represent individuals’ daily activ-

ities, being able to build an activity ontology (see Figure 1b).

If a1 and a2 are two activities, we measure their distance,

denoted as Dac(a1, a2), as in Definition 4, by exploiting the

activity hierarchy instead of the location one.

Social distance: to calculate the distance between the

social attributes, we exploit an ontology similar to the one

used by social networks [17]. If s1 and s2 are two social

attributes, we measure their distance, denoted as Dsl(s1, s2),
as Definition 4, by exploiting the social hierarchy (cfr. Figure

1c).

Example 3: Let us consider user U ’s context-based privacy

preference (CTXpp U ) presented in Example 2. Let us assume

that U moves to a new context, according to which location

is kitchen, time is Monday morning, activity is cooking
with parents. According to the location, activity, social, time

distance definitions and the hierarchies shown in Figure 1, we

can measure the distance between each context components

as follows:

Dlc(library, kitchen) = 1− (2 ∗ 1)
(2 + 2 + 2 ∗ 1) = 1− 2

6

= 1− 0.34

= 0.64

Likewise,

Dac(studying, cooking) = 1− 0.5 = 0.5

Dsl(brother, parents) = 1− 0.4 = 0.6

Dtm(Monday morning,Monday morning) = 0

C. Context similarity

When computing the similarity between two contexts, we

take into account which are the contextual information that

a user considers more relevant in determining the similarity.

Therefore, we add weights to the similarity measure to keep

into account the user perspective. Such weights will be learnt

by using machine learning algorithms (as explained in Section

III-D).

Definition 5: (Context similarity score). Let CTXU 1 and
CTXU 2 be two contexts for user U . Let w1, . . . w4 be the
weights associated with each of the four context attributes.
Therefore, the similarity score is defined as follows:

Example 4: Let us consider user U ’s context-based privacy

preference presented in Example 2, and the new contexts and

related distance measures illustrated in Example 3. Suppose

that the learned weights are w1 = 0.1, w2 = 0.2, w3 = 0.3,

and w4 = 0.4. Therefore, according to Definition 5, the

similarity score is calculated as follows:

Simw(CTX1, CTX2) =

1− 0.1 ∗ 0 + 0.2 ∗ 0.66 + 0.3 ∗ 0.5 + 0.4 ∗ 0.6
4

= 1− 0 + 0.132 + 0.15 + 0.24

4
= 1− 0.13 = 0.87

D. Learning mechanism

In this subsection, we explain the learning strategy we have

designed. Since we need users feedback, we exploit supervised

machine learning algorithms, namely, Logistic Regression

(LR), Random Forest (RF), and Naive Bayesian (NB) [5].

Moreover, the preliminary experiments we have carried out

show that, with a reasonable user burden (i.e., asking only

30 questions), we are able to get a dataset that is adequate

for supervised learning, hence, we do not consider semi-

supervised learning approaches.

We use machine learning algorithms to build a classifier

able to decide which privacy preference will be set for the

user new context. More particularly, we build a classifier able

to decide: (i) which elements of the context are more relevant
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Figure 2: Learning architecture

(e.g., location. time) for the target user; and (ii) how much

privacy preference components associated with preferences

defined for similar contexts could be modified.

For this purpose, the proposed solution has a first training

phase (see Figure 2), where the user is required to judge

whether a given privacy preference works for a certain context

or (s)he wishes to modify it. More precisely, let CTXnew

be a new context and CTXsim the most similar context to

CTXnew.4 We take the privacy preference associated with

CTXsim, denoted as PPsim ctx, and we ask the user if (s)he

would adopt PPsim ctx in CTXnew as is or would like to

modify it. In the latter case, we let the user modify it obtaining

a new preference, denoted as PPmod. Then, we measure the

distance between each component of PPsim ctx and PPmod,

denoted as Dispp. For measuring the distance between privacy

preferences components, we rely on the metrics introduced in

our previous work [18]. Finally, the features set on which we

build the proposed classifier consists of Disctx, Dispp and

the assigned label (adopt/modify), where Disctx is the set of

distance between each component of CTXnew and CTXsim.

Once the learning phase is concluded, we exploit the

learned classifiers to infer privacy preferences for new con-

texts. More particularly, when the user moves to a new context

CTXnew, the proposed approach (i.e., evaluation module)

computes similarity scores between the new context and all

contexts for which a privacy preference has been previously

specified. We recall that according to Definition 5, this score

exploits w1, . . . , w4 weights to take into account which context

field (e.g., time or location) is more relevant to the user. These

weights are initialized with values of weights of the classifier

model built in the training phase. As an example, w1 weight,

associated to the time context field in Definition 5, is initialized

with the value of weight computed by classifier for the feature

containing the distance between time in Disctx.

4We assume that user has inserted a preliminary small set of context-based
privacy preferences. CTXsim is selected among contexts associated to these
preferences.

Then, it selects the privacy preference of the most similar

context, and adapts the selected privacy preference according

to the learnt user’s adapting attitudes. More precisely, to

determine how much each privacy preference component has

to be modified, we exploit the correlation between privacy

preference components and the context fields. For this purpose,

we used a linear regression model [19], defined as Y =
r1x1+r2x2+. . .+rnxn+ε where, r1, . . . , rn are the regression

coefficients, x1, . . . , xn are the independent variables, ε is the

constant, and n is the number of attributes (our case n = 4).

To train this model, for each user, we have used the feature set

Disctx as independent variables and as a target variable/label

(i.e., Y ) the value of Dispp. Once trained, this model can

be used to update each privacy preference component. For

example, let consider, as the privacy preference component

that needs to be modified, the retention attribute retmod

having value 260 days. Let assume that the learned coefficients

r1, . . . , r4 are 2, 8, 15, and 11, respectively, and the constant

value ε is −10. Let suppose the distance values between the

new context and the similar context is the one presented in

Example 3. Therefore, the update retention value would be:

retupdt = retmod + Y = 260 + (2 ∗ 0 + 8 ∗ 0.64 + 15 ∗ 0.5 +
11 ∗ 0.6− 10) = 270 days.

IV. EXPERIMENTS

In this section, we illustrate a series of preliminary ex-

periments we have performed to show the effectiveness of

the proposed approach. More particularly, to demonstrate the

feasibility of the proposed approach, we compare it with

the naive strategy of inferring new context-based privacy

preferences from scratch. At this aim, we have extended the

approach proposed in [4], where a learning approach has

been proposed to suggest traditional (i.e., non context-based)

privacy preferences. More precisely, [4] creates a training

dataset of user labels on a set of service requests (e.g.,

accept/deny decision on a given service request), and builds a

classifier on this training dataset, able to automatically decide

if a new service request should be accepted or denied. To make

a fair comparison with the proposed approach, we modify the

learning strategy proposed in [4] so that it can infer privacy

preferences from service requests containing also contextual

data. We first measure the accuracy and F1 score obtained by

using LR, RF, and NB. Next, we compute the satisfaction level
of users regarding privacy preference suggestions generated by

both approaches using various learning strategies. In addition,

we also evaluate the user quality in terms of feedback on

the training dataset to examine how a badly labeled training

dataset impacts user satisfaction.

A. Experimental settings

To generate a meaningful dataset, we consider the fol-

lowing contextual information: 23 different locations (e.g.,

home, office, university, and so on), 7 days (e.g., Sunday,
Monday, etc.) with 4 time slots (e.g., morning, afternoon,
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Predicted class
Yes No

True class
Yes TPyes Eyes,no

No Eno,yes TPno

Table I: Confusion matrix

evening, and night), 12 different user activities (e.g., study-
ing, meeting, sleeping, and so on), and 10 different social

attribute values (e.g., alone, family, friends, and so on). For

privacy preferences, we consider: 12 purposes (e.g., payment,
treatment, research, and so on) for which a service provider is

allowed to collect users’ data, 30 different data types (e.g.,

name, email id, phone number, date of birth, credit card,
blood pressure, and so on) to which privacy preferences can

refer to, retention time between 1 to 365 days, and third-party

data access status either yes or no.

To collect labels for the training dataset, we developed

a web application through which users can give feedback

on system-generated privacy preferences. We have recruited

two types of evaluators, namely, university-based and crowd-

sourcing based evaluators. More particularly, we first col-

lected data of 10 CS students from the Islamic University,

Bangladesh. Then, to have a bigger group of evaluators with

different nationalities and ages, we used the Microwork-

ers crowd-sourcing platform.5 From this platform, we have

collected data from 50 evaluators (aka workers). We recall

that to learn user’s aptitude in adapting his/her context-based

privacy preferences, we posed some questions to the users. The

answers to these questions are then used as a labeled training

dataset on which we build the classifiers. It should be pointed

out that we have collected two types of dataset. First, we

collect a labeled training dataset for the naive approach from

30 users (i.e., 10 CS students plus 20 workers), denoted in

what follows as naive approach dataset, then we exploit other

30 users to collect a labeled training dataset for evaluating our

approach (we name this as proposed approach dataset).

To evaluate whether the classifier correctly works on the

new context, we also ask users to give their feedback on the

privacy preference suggestions generated by the system (i.e.,

testing phase).

After collecting the datasets, we have trained the learning

algorithms by exploiting the R platform [20]. In order to mea-

sure the effectiveness of the proposed approach, we consider

the confusion matrix illustrated in Table I. According to this,

we exploit the standard evaluation metrics, namely, accuracy,

precision, recall, and F1-score, illustrated in Table II.

B. Effectiveness

In this experiment, we carried on a comparative analysis

of accuracy and F1-score obtained by the proposed approach

and the naive one using different classifiers.

5https://www.microworkers.com

Accuracy = (TPyes + TPno) / total number of samples
Precision Yes = TPyes / (TPyes + Eno,yes)
Precision No = TPno / (TPno + Eyes,no)
Recall Yes = TPyes / (TPyes + Eyes,no)
Recall No = TPno / (TPno + Eno,yes)

F1C = (2 ∗ PrecisionC ∗RecallC )/(PrecisionC + RecallC ),
where C ∈ {Y es, No}

Table II: Metrics definition

Figure 3: Comparison of accuracy of different approaches

Accuracy. As a first experiment, we use the training

datasets and re-label them with the built classifiers. As shown

in Figure 3, about 99% and 98% of the proposed approach

and naive approach datasets have been correctly labeled by

RF, respectively. Likewise, around 98% and 93.2% of the

proposed approach and naive approach datasets have been

correctly labeled by LR, respectively, whereas, only 88.3%
and 76.7% of the two training datasets have been correctly

labeled by NB, respectively. Therefore, we can see that RF

gives better performance on proposed approach than the naive

one.

F1-score. We have calculated the F1 score for each class

(yes, no) for comparing the performance among the learning

approaches over the training dataset and testing dataset (see

Table III). Figures 4 and 5 represent the F1 score comparison

for the two approaches using different classifiers. it can be

observed that, for both approaches, RF gives greater F1-

score. More particularly, by using RF, the proposed approach

achieves 97% and 94% F1-score for the class label yes on the

training and testing dataset, respectively.

C. Participant evaluation

In this experiment, in order to evaluate user satisfaction,

we collect feedback from the users regarding the privacy

preference suggestions taken by both approaches using various

learning strategies.

Satisfaction level. We exploit the developed web applica-

tion to show evaluators the system-generated privacy prefer-

ences for the new context, and we ask the evaluators to give

their feedback regarding the system-generated suggestions.

More precisely, we have shown to each evaluator 15 context-

based privacy preferences, where, 12 of them have been
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Figure 4: Comparison of F1 score of different classifiers for

training dataset

Figure 5: Comparison of F1 score of different classifiers for

testing dataset

generated by the classifiers, whereas the remaining 3 are

taken from the set of context-based privacy preferences that

the evaluators have set up during the learning phase. These

are used for checking the consistency of evaluators feedback

and measuring the evaluators’ quality (as later explained). As

shown in Figure 6, about 65% of the evaluators are satisfied

with the suggestions given by the proposed approach using

RF, whereas, around 57.5% of the evaluators are satisfied

with the suggestions given by the naive approach. Similarly,

by using LR, around 62% and 53.3% of the evaluators are

satisfied with the suggestions given by the proposed approach

and the naive approach, respectively. Likewise, by using NB,

about 49% and 41.6% of the evaluators are satisfied with the

suggestions given by the proposed approach and the naive one,

respectively. Therefore, it is clear that the proposed approach

achieves higher satisfaction level than the naive one.

Evaluators quality. Through this experiment, we are inter-

ested in investigating how a badly labeled training dataset im-

pacts the satisfaction level. With this aim, we used some tech-

niques to identify consistent and inconsistent evaluators. To do

so, we have taken 3 context-based privacy preferences from the

set of context-based privacy preferences that evaluators have

labeled during the training phase. Then, in the testing phase,

the web application shows these privacy preferences again to

them, and collect the label (i.e., satisfaction level) they assign.

Based on this, we can judge whether the evaluator is consistent

Figure 6: Comparison of evaluators satisfaction level for

different approaches

Figure 7: Satisfaction level of consistent and inconsistent

evaluators

or not in his/her decisions. We consider that an evaluator is

consistent if any two out of three decisions taken during the

training and the testing phase match. Figure 7 presents the

comparative analysis of the satisfaction level of consistent and

inconsistent evaluators for both the approaches. It can be seen

that, the satisfaction level of consistent evaluators is greater

than the satisfaction level of inconsistent evaluators. However,

even in the worst case, about 35.4% of inconsistent evaluators

are satisfied with the decisions by the proposed approach,

whereas, it is only 28.5% for the naive approach.

However, from the above experimental results, it is clear

that the proposed approach provides better performance in

terms of accuracy and satisfaction level. Besides, these results

let us think that this is a good direction to study and there

is room for improvement. By doing more experiments, we

need to understand why users are not satisfied with the

system-generated suggestions and how we can increase their

satisfaction level.

V. CONCLUSION

In this paper, we have proposed a service for helping

users to manage their context-based privacy preferences. To

show the feasibility of the proposed approach, we compared

the proposed approach with a naive approach, by using three

different machine learning algorithms (i.e., LR, RF, and NB).
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LR RF NB
Yes No Yes No Yes No

Training

dataset

Proposed

approach

Precision 98.1% 96.6% 96.1% 99.5% 83.9% 75.5%

Recall 99% 90.7% 96.4% 97% 83.8% 64.1%

F1-score 98% 92.4% 97% 97.8% 81% 66.9%

Naive

approach

Precision 93.4% 93.2% 99% 98% 79.2% 60.6%

Recall 95.1% 87.2% 98% 97% 75.1% 68.3%

F1-score 94.2% 89.3% 98% 97% 76.9% 63.2%

Testing

dataset

Proposed

approach

Precision 91.7% 73.3% 92.3% 68.9% 79.93% 58.8%

Recall 96.6% 68.9% 95.3% 68% 83.33% 61.4%

F1-score 93% 70.6% 94% 68.2% 80.56% 58.13%

Naive

approach

Precision 76.4% 52.8% 79.2% 57.6% 73.2% 55.1%

Recall 80.7% 46.4% 81.8% 57.8% 71% 54.3%

F1-score 77.5% 46.9% 79.8% 56.3% 70.6% 51.6%

Table III: Performance comparison of different learning algorithms for the training and testing datasets

The experimental results show that the proposed approach

provides better performance.

In the future, we plan to conduct more user studies, and to

deploy the proposed service into real settings. Also, we plan

to investigate other ontology-based distance measures [21] to

check how these impact the context selection.
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